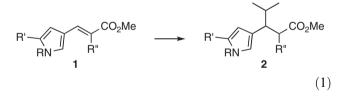


Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 7887-7889

Conjugate addition of organocopper reagents in dichloromethane to α , β -unsaturated esters


Jingyue Yang and Gregory B. Dudley*

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA

Received 7 August 2007; revised 23 August 2007; accepted 29 August 2007 Available online 1 September 2007

Abstract—Organocopper reagents in conjunction with Lewis acid activators provide greater stability than traditional cuprate reagents while maintaining the reactivity needed for conjugate addition reactions in dichloromethane. Whereas cuprates engage in cross-coupling pathways, organocopper nucleophiles are more selective for conjugate addition. The utility of organocopper reagents in dichloromethane for the conjugate addition to α , β -unsaturated esters is expanded upon herein. © 2007 Elsevier Ltd. All rights reserved.

In the course of studies directed toward the chemical synthesis of roseophilin,¹ we confronted the issue of a difficult conjugate addition of an isopropyl substituent to an α -alkyl- β -pyrrolyl- α , β -unsaturated ester (Eq. 1). Despite the wealth of information on organocuprate conjugate additions,² we could not find clear precedent to guide our investigation.

Our particular goal represents an extreme case in the scope of conjugate addition reactions³ for at least two reasons: (a) pyrrolyl ester **1** is less electrophilic than typical enoates, due to conjugation with the electronrich pyrrole; (b) isopropylcuprate is more hindered and less stable than other alkyl- or arylcuprate reagents.⁴ Indeed, we have yet to satisfy our ambitions relating to the desired addition (Eq. 1), and we have taken recourse to alternative tactics.⁵ Nonetheless, in the process of screening a wide range of reaction conditions and completing careful optimization of model conjugate addition reactions, we made relevant observations regarding the rather unconventional protocol of Nilsson and Olsson,^{6,7} which features stable organo-

copper reagents solubilized in dichloromethane in conjunction with trimethylsilyl iodide (Eq. 2).⁸ Previous reports mention ester enoates only briefly, but we found the Nilsson–Olsson protocol to have significant utility with respect to conjugate addition reactions of carbanionic nucleophiles to α , β -unsaturated esters (Table 1).

$$Aryl \underbrace{CO_2Me}_{R'} \underbrace{\frac{R-Li, Cul, Me_2S}{TMSCl, Nal, CH_2Cl_2}}_{R'} \underbrace{\frac{R}{H'}_{R'}CO_2Me}_{R'}$$
(2)

Entries 1–5 depict a series of addition reactions involving methyl cinnamate (**3**, Table 1).⁹ One significant advantage of organocopper over cuprate species is that organocopper reagents are more robust, thereby permitting reactions to be conducted at higher temperatures and for prolonged times without decomposition. Such conditions are useful for addition of less stable carbanionic nucleophiles (entries 3 and 4), addition to less electrophilic alkenes (entries 6 and 7), and/or combinations thereof (entry 12). For example, to achieve the conjugate addition of sec-butylcopper (entry 4), the reaction mixture was stirred without external cooling for 3 h; analogous conditions for the conjugate addition of sec-butylcuprate have not been reported.⁴

The fidelity of mono-organocopper reagents for conjugate addition provides further advantages: conjugate addition to iodo-enoate **11** occurs more efficiently with phenylcopper than diphenylcuprate, which is more

^{*}Corresponding author. Tel.: +1 850 644 2333; fax: +1 850 644 8281; e-mail: gdudley@chem.fsu.edu

^{0040-4039/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.08.105

α,β -Unsaturated ester	Conjugate addition product	R	Yield % ^a
CO ₂ Me	R CO ₂ Me 4a	Me	95
3 3 3 3	4b 4c 4d 4e	<i>n-</i> Bu <i>i-</i> Pr <i>s-</i> Bu Ph	88 74 73 >95
CO ₂ Et	CO ₂ Et	<i>i</i> -Pr	46
TsN 7	R CO ₂ Me TsN 8	Ph	55
CO ₂ Me	R CO ₂ Me	Ph	67 ^b
CO ₂ Me	R CO ₂ Me	<i>i-</i> Pr	61
11 11	12b 12b	Ph Ph	94 <64 ^{c,d}
Eto 13	EtO R CO ₂ Et	<i>i</i> -Pr	80
C ₇ H ₁₅ CO ₂ Et	C_7H_{15} H_{15} CO_2Et 16	Ph	>95
$Ph \xrightarrow{O} CH_2Ph$	$Ph \xrightarrow{R} O CH_2Ph$	Me	86°
	$\int_{C_{7}H_{15}} CO_{2}Me$ 3 3 3 3 \int_{3}^{3} \int_{3}^{3} \int_{3}^{3} $\int_{3}^{0} \int_{5}^{0} CO_{2}Et$ $\int_{5}^{0} \int_{7}^{0} CO_{2}Me$ $\int_{7}^{0} \int_{7}^{0} CO_{2}Me$ 11 11 1 $\int_{11}^{11} \int_{11}^{11} $	$ \begin{array}{ccccc} & & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & $	$ \begin{array}{cccccc} & & & & & & & & & & & & & & & & $

^a Isolated yield of material judged to be >95% pure by ¹H NMR analysis, unless otherwise indicated. See Supplementary data for details.

^b Incomplete reaction; adjusted yield based on recovered starting material was 95%.

^c Diphenylcuprate (2:1 Ph-Li: CuI) employed.

^d Desired product recovered alongside unidentifiable impurities.

^e Conjugate addition product 18 obtained in an approximately 1:1 ratio of diastereomers.

likely to engage in cross-coupling side reactions (entries 10 and 11, Table 1). Our efforts focused on β -aryl-enoates, although alkenoate substrates are suitable (entry 13 and Ref. 6). Diastereoselection in the addition of methylcopper to chiral cinnamic imide 17^{10} was negligible under the current conditions (entry 14).

Dichloromethane, along with dimethyl sulfide as a cosolvent, provides an excellent medium for these

organocopper conjugate addition reactions. Aromatic hydrocarbons are less effective at solvating cuprate reagents, and Lewis-basic ethereal solvents are known to dampen the reactivity of cuprates,¹¹ likely through interactions with the metal centers.

In summary, observations on conjugate addition reactions to α , β -unsaturated carbonyl compounds are reported. Robust organocopper compounds withstand

higher temperatures and longer reaction times than cuprate reagents, and organocopper reagents provide better selectivity for conjugate addition over competing crosscoupling pathways than that provided by cuprates. The mixture of trimethylsilyl chloride and sodium iodide promotes reactivity. This protocol and our observations are likely to be of use for other problems in chemical synthesis.

Acknowledgments

This research was supported by the James and Ester King Biomedical Research Program, Florida Department of Health, an award from Research Corporation, and by the FSU Department of Chemistry and Biochemistry. We thank Dr. Umesh Goli for providing the mass spectrometry data, and the Krafft Lab for the use of their FT-IR instrument.

Supplementary data

Experimental procedures, characterization data, and copies of NMR spectra are provided. Supplementary data associated with this article can be found, in the on-line version, at doi:10.1016/j.tetlet.2007.08.105.

References and notes

- (a) Salamone, S. G.; Dudley, G. B. Org. Lett. 2005, 7, 4443–4445; For a review of the chemistry and biology of roseophilin and related compounds, see: (b) Fürstner, A. Angew. Chem., Int. Ed. 2003, 42, 3582–3603.
- (a) Woodward, S. Angew. Chem., Int. Ed. 2005, 44, 5560– 5562; (b) Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim, 2002; (c) Nakamura, E.; Mori, S. Angew. Chem., Int. Ed. 2000, 39, 3750–3771; (d) Krause, N.; Gerold, A. Angew. Chem., Int. Ed. 1997, 36, 186–204; (e) Lipshutz, B. H.; Sengupta, S. Org. React.

1992, *41*, 135–631; (f) Yamamoto, Y. Angew. Chem., Int. Ed. Engl. **1986**, *25*, 947–1038.

- 3. Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergammon: Oxford, 1992.
- Alkylcuprates, particularly secondary alkylcuprates, that possess β-hydrogens are susceptible to β-hydride elimination and other disproportionation pathways that are not available to aryl- or vinylcuprates.
- 5. Yang, J.; Katukojvala, S.; Dudley, G. B., unpublished results to be disclosed at a future date.
- Bergdahl, M.; Lindstedt, E.-L.; Nilsson, M.; Olsson, T. Tetrahedron 1988, 44, 2055–2062.
- Related work: (a) Johnson, C. R.; Marren, T. J. Tetrahedron Lett. 1987, 28, 27–30; (b) Bergdahl, M.; Lindstedt, E.-L.; Nilsson, M.; Olsson, T. Tetrahedron 1989, 45, 535–543; (c) Bergdahl, M.; Eriksson, M.; Nilsson, M.; Olsson, T. J. Org. Chem. 1993, 58, 7238–7244; (d) Eriksson, M.; Nilsson, M.; Olsson, T. Synlett 1994, 271–272; (e) Bergdahl, M.; Iliefski, T.; Nilsson, M.; Olsson, T. Tetrahedron Lett. 1995, 36, 3227–3230; (f) Eriksson, M.; Hjelmencrantz, A.; Nilsson, M.; Olsson, T. Tetrahedron 1995, 51, 12631–12644; (g) Eriksson, M.; Johansson, A.; Nilsson, M.; Olsson, T. J. Am. Chem. Soc. 1996, 118, 10904–10905.
- 8. Note that we used a combination of Me₃SiCl and NaI in lieu of Me₃SiI.
- 9. Active organocopper reagents were prepared at $-78 \,^{\circ}$ C by mixing 1.1 equiv of CuI, 2.0 equiv of NaI, and dimethyl sulfide (0.6 mL/mmol of CuI) in CH₂Cl₂ and then adding the appropriate organolithium reagent (1.0 equiv) and 2.0 equiv of Me₃SiCl. The active organocopper reagents were then typically employed in fivefold excess with respect to the unsaturated ester or imide, which was added as a solution in dry CH₂Cl₂ at $-78 \,^{\circ}$ C. The reaction mixtures were allowed to warm, typically to room temperature, and monitored for consumption of the activated alkene. Standard aqueous workup and purification techniques were employed to isolate the pure conjugate addition products. See Supplementary data for complete details and characterization data.
- Dambacher, J.; Anness, R.; Pollock, P.; Bergdahl, M. *Tetrahedron* **2004**, *60*, 2097–2110.
- (a) Bertz, S. H.; Miao, G.; Rossiter, B. E.; Snyder, J. P. J. Am. Chem. Soc. 1995, 117, 11023–11024; (b) House, H. O.; Respess, W. L.; Whitesides, G. M. J. Org. Chem. 1966, 31, 3128–3141.